Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            null; null; null; null (Ed.)Distributed reflective denial of service (DRDoS) attacks are a popular choice among adversaries. In fact, one of the largest DDoS attacks ever recorded, reaching a peak of 1.3 Tbps against GitHub, was a memcached-based DRDoS attack. More recently, a record-breaking 2.3 Tbps attack against Amazon AWS was due to a CLDAP-based DRDoS attack. Although reflective attacks have been known for years, DRDoS attacks are unfortunately still popular and largely unmitigated. In this paper, we measure in-the-wild DRDoS attacks as observed from a large Internet exchange point (IXP) and provide a number of security-relevant insights. To enable our measurements, we first developed IXmon, an open-source DRDoS detection system specifically designed for deployment at large IXP-like network connectivity providers and peering hubs. We deployed IXmon at Southern Crossroads (SoX), an IXP-like hub that provides both peering and upstream Internet connectivity services to more than 20 research and education (R&E) networks in the South-East United States. In a period of about 21 months, IXmon detected more than 900 DRDoS attacks towards 31 different victim ASes. An analysis of the real-world DRDoS attacks detected by our system shows that most DRDoS attacks are short lived, lasting only a few minutes, but that large-volume, long-lasting, and highly-distributed attacks against R&E networks are not uncommon. We then use the results of our analysis to discuss possible attack mitigation approaches that can be deployed at the IXP level, before the attack traffic overwhelms the victim’s network bandwidth.more » « less
- 
            null (Ed.)The rapid growth of online advertising has fueled the growth of ad-blocking software, such as new ad-blocking and privacy-oriented browsers or browser extensions. In response, both ad publishers and ad networks are constantly trying to pursue new strategies to keep up their revenues. To this end, ad networks have started to leverage the Web Push technology enabled by modern web browsers. As web push notifications (WPNs) are relatively new, their role in ad delivery has not yet been studied in depth. Furthermore, it is unclear to what extent WPN ads are being abused for malvertising (i.e., to deliver malicious ads). In this paper, we aim to fill this gap. Specifically, we propose a system called PushAdMiner that is dedicated to (1) automatically registering for and collecting a large number of web-based push notifications from publisher websites, (2) finding WPN-based ads among these notifications, and (3) discovering malicious WPN-based ad campaigns. Using PushAdMiner, we collected and analyzed 21,541 WPN messages by visiting thousands of different websites. Among these, our system identified 572 WPN ad campaigns, for a total of 5,143 WPN-based ads that were pushed by a variety of ad networks. Furthermore, we found that 51% of all WPN ads we collected are malicious, and that traditional ad-blockers and URL filters were mostly unable to block them, thus leaving a significant abuse vector unchecked.more » « less
- 
            null (Ed.)Smart-home devices promise to make users’ lives more convenient. However, at the same time, such devices increase the possibility of breaching users’ privacy as they are tightly connected to the users’ daily lives and activities. To address privacy invasion through smart-home devices, we present ChatterHub. This novel approach accurately identifies smart-home devices’ activities with minimal monitoring of encrypted traffic in the home network. ChatterHub targets devices that can only connect to the Internet through a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub passively eavesdrops on encrypted network traffic from the hub and leverages machine learning techniques to classify events and states of smart-home devices. Using ChatterHub, an adversary can identify smart-home devices’ specific activities without prior knowledge of the target smart home (e.g., list of deployed devices, types of communication protocols). We evaluated the accuracy and efficiency of ChatterHub in three real-world smart-home environments, and the evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open and close of a smart door lock and turn on and off of smart LED. Additionally, to mitigate the threats posed by ChatterHub, we introduce two approaches, packet padding and random sequence injection. These mitigation approaches can effectively prevent threats from ChatterHub with only 9.2MB of additional network traffic per day.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available